To change cell values to list format in a pandas dataframe, you can use the `apply`

method along with a lambda function. You can create a lambda function that converts the cell value to a list and then use the `apply`

method to apply this lambda function to each cell in the dataframe. This will transform the cell values into list format.

## How to transform pandas dataframe columns to list?

You can transform pandas dataframe columns to a list by using the tolist() method. Here is an example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import pandas as pd # Create a sample dataframe data = {'A': [1, 2, 3, 4], 'B': ['apple', 'banana', 'cherry', 'date']} df = pd.DataFrame(data) # Transform column A to a list column_A_list = df['A'].tolist() print('Column A as list:', column_A_list) # Transform column B to a list column_B_list = df['B'].tolist() print('Column B as list:', column_B_list) |

This will output:

1 2 |
Column A as list: [1, 2, 3, 4] Column B as list: ['apple', 'banana', 'cherry', 'date'] |

## How to convert pandas dataframe to list of arrays with specific shape?

You can convert a pandas DataFrame to a list of arrays with a specific shape by first converting the DataFrame to a numpy array and then reshaping it to the desired shape. Here's an example code snippet to demonstrate how to do this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
import pandas as pd import numpy as np # Create a sample DataFrame df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10]}) # Convert the DataFrame to a numpy array arr = df.to_numpy() # Reshape the array to the desired shape desired_shape = (2, -1) # This will reshape the array to have 2 rows and the appropriate number of columns arr_reshaped = np.reshape(arr, desired_shape) # Convert the reshaped array to a list of arrays list_of_arrays = arr_reshaped.tolist() print(list_of_arrays) |

In this example, the DataFrame `df`

is first converted to a numpy array `arr`

, which is then reshaped to have 2 rows and the appropriate number of columns (determined by the `-1`

in the `desired_shape`

). Finally, the reshaped array is converted to a list of arrays `list_of_arrays`

.

## What is the fastest way to convert pandas dataframe to list in Python?

One of the fastest ways to convert a pandas DataFrame to a list in Python is to use the `values.tolist()`

method. This method converts the DataFrame to a list of lists containing the data from the DataFrame.

Here is an example:

1 2 3 4 5 6 7 8 9 |
import pandas as pd # Create a sample DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']}) # Convert DataFrame to a list of lists list_of_lists = df.values.tolist() print(list_of_lists) |

This will output:

```
1
``` |
```
[[1, 'a'], [2, 'b'], [3, 'c']]
``` |

Using the `values.tolist()`

method is a fast and efficient way to convert a pandas DataFrame to a list in Python.

## How to convert a pandas dataframe to list?

You can convert a pandas DataFrame to a list by using the `values`

attribute of the DataFrame. Here's how you can do it:

1 2 3 4 5 6 7 8 9 10 |
import pandas as pd # Create a sample DataFrame data = {'A': [1, 2, 3], 'B': ['a', 'b', 'c']} df = pd.DataFrame(data) # Convert the DataFrame to a list df_list = df.values.tolist() print(df_list) |

This will output:

```
1
``` |
```
[[1, 'a'], [2, 'b'], [3, 'c']]
``` |

Each row of the DataFrame will be converted to a list, and all these lists will be stored in another list.

## What is the algorithm for converting pandas dataframe to list in Python?

To convert a pandas DataFrame into a list in Python, you can use the `values`

attribute of the DataFrame to get a numpy array representation, and then convert the numpy array to a list.

Here is an example algorithm:

- Import the pandas library
- Create a pandas DataFrame
- Use the values attribute of the DataFrame to get a numpy array representation
- Convert the numpy array to a list using the tolist() method

Here is a sample code snippet:

1 2 3 4 5 6 7 8 9 10 |
import pandas as pd # Create a sample DataFrame data = {'A': [1, 2, 3], 'B': ['foo', 'bar', 'baz']} df = pd.DataFrame(data) # Convert the DataFrame to a list df_list = df.values.tolist() print(df_list) |

This will output:

```
1
``` |
```
[[1, 'foo'], [2, 'bar'], [3, 'baz']]
``` |

Now, `df_list`

is a list representation of the pandas DataFrame `df`

.