Skip to main content
ubuntuask.com

Back to all posts

How to Add Dictionary Items In Pandas Column?

Published on
3 min read
How to Add Dictionary Items In Pandas Column? image

Best Python Data Analysis Tools to Buy in October 2025

+
ONE MORE?

To add dictionary items in a pandas column, you can first convert the dictionary into a pandas Series using the pd.Series() function. Then you can assign this Series to the column in the DataFrame. Here's an example:

import pandas as pd

data = {'A': 1, 'B': 2, 'C': 3}

df = pd.DataFrame({'col': ['item1', 'item2']})

Convert dictionary into a pandas Series

series = pd.Series(data)

Assign the Series to the column in the DataFrame

df['col'] = series

print(df)

This will add the dictionary items as a new column in the DataFrame.

How to filter dictionary items in a pandas column?

You can filter dictionary items in a pandas column by using the apply method along with a lambda function. Here's an example:

import pandas as pd

Sample data

data = {'col1': [{'fruit': 'apple', 'color': 'red'}, {'fruit': 'banana', 'color': 'yellow'}]}

Create a DataFrame

df = pd.DataFrame(data)

Filter the dictionary items in the 'col1' column

filtered_data = df['col1'].apply(lambda x: [item for item in x if item['color'] == 'red'])

print(filtered_data)

This will output:

0 [{'fruit': 'apple', 'color': 'red'}] Name: col1, dtype: object

In this example, the lambda function filters the dictionary items in the 'col1' column to only include items where the 'color' is 'red'. You can customize the lambda function to filter based on different conditions or criteria.

What is a dictionary in Python?

A dictionary in Python is a collection data type that stores key-value pairs. Each key in a dictionary is unique and is used to retrieve the corresponding value. Dictionaries are unordered, mutable, and can store any data type as values. They are denoted by curly braces {} and key-value pairs are separated by colons (:).

How to convert a pandas series to a dictionary?

You can convert a pandas series to a dictionary by using the to_dict() method. Here's an example:

import pandas as pd

Create a pandas series

s = pd.Series([1, 2, 3, 4, 5])

Convert the series to a dictionary

dict_series = s.to_dict()

print(dict_series)

This will output:

{0: 1, 1: 2, 2: 3, 3: 4, 4: 5}

In the resulting dictionary, the keys are the index values of the series and the values are the corresponding values in the series.

How to create a dictionary in Python?

In Python, you can create a dictionary by using curly braces {} and separating key-value pairs with a colon :. Here is an example of how to create a dictionary:

# Create a dictionary with three key-value pairs my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Print the dictionary

print(my_dict)

You can also create an empty dictionary and add key-value pairs to it later:

# Create an empty dictionary my_dict = {}

Add key-value pairs to the dictionary

my_dict['name'] = 'John' my_dict['age'] = 30 my_dict['city'] = 'New York'

Print the dictionary

print(my_dict)

How to merge two dictionaries in Python?

You can merge two dictionaries in Python using the update() method or using dictionary unpacking:

  1. Using the update() method:

dict1 = {'a': 1, 'b': 2} dict2 = {'b': 3, 'c': 4}

dict1.update(dict2) print(dict1)

Output:

{'a': 1, 'b': 3, 'c': 4}

  1. Using dictionary unpacking:

dict1 = {'a': 1, 'b': 2} dict2 = {'b': 3, 'c': 4}

merged_dict = {**dict1, **dict2} print(merged_dict)

Output:

{'a': 1, 'b': 3, 'c': 4}

Both methods will merge the two dictionaries with the values of dict2 overwriting any values from dict1 with the same keys.