Skip to main content
ubuntuask.com

Back to all posts

How to Convert String Column to Dictionary Type In Pandas Dataframe?

Published on
3 min read
How to Convert String Column to Dictionary Type In Pandas Dataframe? image

To convert a string column to a dictionary type in a pandas dataframe, you can use the apply function along with the json.loads method. First, make sure that the strings in the column are in valid dictionary format. Then, apply the json.loads method to each value in the column using the apply function. This will convert each string in the column to a dictionary type. Finally, assign the column back to the dataframe to update it with the new dictionary values.

How do I convert a string column to dictionary type in a pandas dataframe?

You can convert a string column to a dictionary type in a pandas dataframe by using the apply function along with the ast.literal_eval function from the ast module.

Here is an example code snippet that demonstrates how to achieve this:

import pandas as pd import ast

Sample dataframe

data = {'string_column': ['{"key1": "value1", "key2": "value2"}', '{"key3": "value3", "key4": "value4"}']} df = pd.DataFrame(data)

Convert string column to dictionary type

df['dictionary_column'] = df['string_column'].apply(lambda x: ast.literal_eval(x))

Print the dataframe

print(df)

This code snippet will take the values in the string_column and convert them into dictionaries, storing the result in a new column dictionary_column in the dataframe.

How do I convert a JSON string column to dictionary type in pandas dataframe?

You can use the json.loads() function from the json module to convert a JSON string column in a pandas dataframe to a dictionary type. Here is an example of how you can do this:

import pandas as pd import json

create a sample dataframe with a JSON string column

data = {'json_column': ['{"key1": 1, "key2": 2}', '{"key1": 3, "key2": 4}']} df = pd.DataFrame(data)

convert JSON strings in the column to dictionaries

df['json_column'] = df['json_column'].apply(lambda x: json.loads(x))

print(df)

This code snippet will convert the JSON strings in the json_column to dictionaries in the pandas dataframe df.

How do I handle duplicate keys when converting a string column to dictionary type in pandas dataframe?

When converting a string column to a dictionary type in a pandas dataframe, if there are duplicate keys in the string column, you can handle them by using the following steps:

  1. Create a function to handle the duplicates: You can create a custom function that handles duplicate keys by either keeping the first occurrence, keeping the last occurrence, or combining the values of the duplicate keys.
  2. Apply the function to the dataframe column: Use the apply method on the dataframe column to apply the custom function to each value in the column.
  3. Convert the column to a dictionary type: Use the ast.literal_eval function to convert the modified column values to a dictionary type.

Here's an example code snippet to handle duplicate keys when converting a string column to dictionary type in pandas dataframe:

import pandas as pd import ast

Sample dataframe with a string column containing duplicate keys

data = {'id': [1, 2, 3], 'info': ['{"name": "John", "age": 30, "city": "New York"}', '{"name": "Alice", "age": 25, "city": "Chicago"}', '{"name": "Bob", "age": 35, "city": "Los Angeles"}']} df = pd.DataFrame(data)

Custom function to handle duplicate keys by keeping the first occurrence

def handle_duplicates(x): unique_keys = {} for key, value in ast.literal_eval(x).items(): if key not in unique_keys: unique_keys[key] = value return unique_keys

Apply the custom function to the 'info' column

df['info'] = df['info'].apply(handle_duplicates)

print(df)

In this example, the custom function handle_duplicates is applied to the 'info' column, which removes any duplicate keys by keeping only the first occurrence of each key. The column values are then converted to a dictionary type using the ast.literal_eval function.